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The stability of steady, plane, one-dimensional, trans-Alfv6nic shocks to small 
normal disturbances (i.e. those in which the perturbed quantities are functions 
only of time and the distance from the plane of the shock wave) is discussed. 
The magnetic diffusivity of the ambient gas is taken to be very much greater 
than each of the viscous diffusivities and the thermal diffusivity. 

It is confirmed in detail that all plane-polarized trans-Alfvhic shocks, except 
the 3-3 type (which is the only type that has no steady-state structure), are 
unstable to disturbances in those components of the magnetic field and velocity 
which are transverse to the plane of polarization. An incident Alfvkn wave, 
consisting of a weak, diffusing current-sheet would initially cause the shock 
profiles of these transverse quantities to grow linearly with time, while outside 
this shock region steady, uniform states would be reached. An integral condition 
is obtained which, together with the relevant boundary conditions, determines 
the asymptotic shock profiles of the transverse quantities whenever the disturb- 
ance is such that a steady state is reached. This removes the puzzling arbitrari- 
ness of these profiles. 

It is also shown that the ‘ 1-4’ trans-Alfvknic shock is unstable to magneto- 
acoustic waves and contact fronts. A qualitative description of how it may be 
broken up is given. If the disturbance is of finite extent, a steady state is reached. 
An integral equation is obtained which, together with the relevant boundary 
conditions, determines the asymptotic steady-state shock-profiles for this case. 
This removes the apparent arbitrariness of these profiles. 

The behaviour of ‘2-3’ trans-Alfvknic shocks and of switch-on and switch-off 
si19cks is discussed. 

1. Introduction 
A great deal of work has been done on the steady-state shock-structure of 

plane, oblique, magneto-gasdynamic shocks in a finite conductor (see, for 
example, Ludford 1959). The stability of these shocks to normal disturbances 
has been considered by Akhiezer, Liubarskii & Polovin (1958) and others, the 
ambient gas being treated as perfectly conducting. The following table includes 

t Now a t  the Department of Applied Mathematics, Massachiisctts Institute of Tech- 
nology, Cambridge, Massachusetts. 
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4 

NAGNETO-ACOUSTIC 

Waves, 7 in and 3 out 

Shock structure, 
(too fcw out) 

not unique 

UNSTABLE 

ALFVEN 
Waves, 3 in and 1 out 

Shock structure, 
(too few out) 

not unique even if 
the shock profiles of 
the magneto-acoustic 
quantities are known 
explicitly 

MAGNETO-ACOUSTIC 

Waves, 6 in and 4 out 
(correct number out) 

Shock structure, 
unique 

UNSTABLE 

ALFVEN 

Waves, 3 in and 1 out 
(too few out) 

Shock structure, 
not unique 

MAGNETO -ACOUSTIC 

Waves, 6 in and 4 out 
(correct number out) 

Shock structure, 
unique 

STABLE 

4LFVEN 

Waves, 2 in and 2 out 
(correct number out) 

Shock structure, 
unique (i.e. 
v, = B, = 0) 

3 

MAGNETO -ACOUSTIC 

Waves, 6 in and 4 out 
(correct number out) 

Shock structure, 
unique 

UNSTABLE 

ALFVEN 

Waves, 3 in and 1 out 
(too few out) 

Shock structure, 
not unique 

MAGNETO-ACOUSTIC 

Waves, 5 in and 5 out 
(too many out) 

Shock structure, 
non-existent 

NON-STATIONAR Y 

ALFV$N 

Waves, 3 in and 1 out 
(too few out) 

(Steady-state eqna- 
tions cannot be 
examined because 
V,, etc., have no 
steady-state shock- 
structure) 

2 

MAGNETO-ACOUSTIC 

Waves, 6 in and 4 out 
(correct number out) 

Shock structure, 
unique 

STABLE 

ALFVEN 

Waves, 2 in and 2 out 
(correct number out) 

Shock structure, 
unique (i.e. 
V ,  = B, = 0) 

a Cf 
Downstream longitudinal velocity, u2 

TABLE 1. The properties of oblique magneto-gasdynamic shocks 
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a summary of this work. The comments on the structure of the transverse? 
quantities is made as a result of the work outlined in this paper. C, and C, are 
the velocities of propagation of magneto-acoustic waves (Cf > C,). a, the 
Alfvhn velocity, is the velocity of propagation of transverse disturbances. 
Contact fronts are convected with the fluid. The numbers along the side of the 
table refer to the end states. The classification is that given by Germain (1959) 
and used by Shercliff (1960). A shock of the ‘ 1-4 ’ variety is subject to the remarks 
of the top left-hand box. Similarly, the comments in the box a t  the top right- 
hand corner of the table refer to a ‘ 1-2’ shock. 

In each box, a count of the ten magneto-acoustic waves and contact fronts 
(magneto-acoustic) coming into and going away from the shock is made, and a 
comment is added as to whether or not these are in the right balance, i.e. 6-4. 
The Alfvhn waves (Alfvhn), i.e. those waves involving the transverse quantities 
only, have been similarly treated. 

Below each count of the waves, both magneto-acoustic and AlfvBn, a note is 
made on the shock structure of the quantities involved in those waves, for the 
case in which the magnetic diffusivity is dominant. This is a situation often met 
in practice. In  such a plasma, a shock consists of a region of ohmic dissipation 
within which a very much thinner subshock, which corresponds to an ordinary 
gas dynamic shock, may be obtained.$ All the diffusivities, except the magnetic 
diffusivity, are effectively taken as zero outside these subshocks. Continuum, 
macroscopic theory is accurate outside subshocks. 

The ‘2-3’ shock has no steady-state structure and is consequently termed 
non-stationary . 

The table indicates the connexion between the non-existence, uniqueness or 
non-uniqueness of the shock structure and the excess, correctness or dejiciency of the 
number of outgoing waves. 

In a previous paper (Todd 1964) the evolution of trans-Alfvhnic, normal 
shocks was discussed in detail. The introduction given there will clarify the 
preceding remarks of this section and will give the reader a much more extensive 
introduction to the subject. 

Some comment on the notation, etc., which is employed in this paper is given 
below. The word ‘trans-AlfvBnic’ will be abbreviated to T.A. and the adjective 
‘trans-AlfvBnic normal’ will be shortened to T.A.N. The ‘1-3’, ‘1-4’ and ‘2-4’ 
shocks are all trans-Alfvhnic. The undisturbed picture is one of a T.A. shock at  
rest in a finite conductor. Our basic Cartesian axes, OX I’Z, are chosen moving 
in the gasdynamic subshock 3 (discontinuity) such that the y- and z-components 
of the electric field are zero, Oz being chosen parallel to the direction of net 
current flow in the shock region. This means that the z-components of magnetic 
field and velocity outside the shock region are zero, i.e. the magnetic field and 

t For simplicity axes have been chosen, moving in the shock, such that both the 
magnetic field and velocity outside the shock region are contained in one plane. The normal 
to this plane is in the transverse direction. 

$ Whether or not a subshock exists depends on the details of the end states of the shock. 
5 For those T.A. shocks not containing a gasdynamic subshock, axes are chosen ‘moving 

in the shock’. The ‘1-4’ T.A. shock always contains a subshock. The others may or may 
not contain one. 

13-2 
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velocity, outside the shock region, are plane polarized. Ox points in the trans- 
verse direction. Ox points in the direction of variation and is normal to the 
shock. Selative to this set of axes, V, the velocity vector, is parallel to B, the 
magnetic: field vector (see, for example, Shercliff 1960), outside the shock region. 

The upstream region is referred to as region 1 and all quantities evaluated 
there are given the suffix 1. A similar statement holds for the downstream 
region: region 2. 

2. The stability of trans-AlfvCnic shocks to transverse disturbances 
The disturbances considered are functions of x and t (time) only. The full 

title for such perturbations is ‘normal disturbances in the transverse quantities ’. 
However, we shall mostly use the term ‘transverse disturbances’. 

2.1. Equations and boundary conditions 

Let us consider the evolution of the general T . A .  shock, subject only to the 
density, magnetic diffusivity and the normal component of the velocity vector 
having a steady-state shock profile in the undisturbed state. This includes all 
but the ‘2-3’ species of T.A. shock. The ‘2-3’ shock will be the subject of dis- 
cussion in a later section. 

The profiles of the three aforementioned quantities are explicit functions of x 
for the ‘1-3’ and ‘2-4’ T.A. shocks. However, for the ‘1-4’ T.A. shock the 
steady-state forms of V,, etc., are not explicit functions of x but also involve 
(implicitly) an apparently indeterminate constant. 

The equations governing small disturbances in the transverse quantities are 
(in M.K.S. units): 

and 

where B,, etc., are the Cartesian components of the magnetic-flux-density 
vector, V = (JL,V,,V,) is the velocity vector, p the density, ,u the magnetic 
permeability; h the magnetic diffusivity is l/(,ug), being the electrical con- 
ductivity. B, is constant in value. 

The boundary conditions for Ji and B, across a gasdynamic discontinuity are 

where the square brackets are used to denote the change of the quantity enclosed. 
Equation (3) expresses the fact that the y-component of the electric field is 
continuous across a gasdynamic discontinuity 

Equation (4) requires that the transverse momentum flux plus Maxwell stresses 
are in balance. [B,] = 0. (5) 
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This last condition is a consequence of the fact that no appreciable current sheet 
can flow within a shock of width very much less than that which is based on 
ohmic dissipation. 

The three remaining boundary conditions involve only p ,  p, and V,, and they 
are the well-known Rankine-Hugoniot equations. The gasdynamic subshocks 
have been observed in practice and are well behaved, i.e. even when time changes 
in the flow are taking place, the rate at which these subshocks absorb mass, 
momentum, energy and magnetic flux is negligible, and so the boundary condi- 
tions which have just been derived are valid across them even when we study 
unsteady phenomena. 

In equations (1)-(5), V, has been set equal to u, its steady-state form. p and A 
have been similarly treated. Terms of second order have been neglected. Unless 
the shock is ‘ 1-4’, this linearized form of the equations and boundary conditions 
is correct to the order of retainment of terms even if magneto-acoustic disturb- 
ances are taking place simultaneously. It is shown in $ 3 that the structure of 
a ‘1-4’ shock could change significantly in this case. Hence, when directly 
applying the results of this section to a ‘ 1-4’ case, we would be assuming that 
no appreciable change in the shock structure of V,, etc., is taking place. Even if 
such a change took place, the results of this section and $ 3  can be combined 
(see $ 3.7) to obtain the correct result. 

b = (Bz/Bz), v = (x /u)  and m = (%/a) = + & L ~ V : / B ~ )  

are useful non-dimensional quantities. To our order of retainment of terms, 
only the steady-state form of m enters this problem. 

We shall only consider those disturbances in which B, and V ,  tend to constant 
values as ] X I  -+a and are such that 

are all finite. One could not expect to find asymptotic solutions for disturbances 
which are not of this type. Let us define the following quantities 

where A is a measure of the flux of Bt per unit strip in the ( x ,  y)-plane, the strip 
being directed along Ox;  and 

where x is directly proportional to the x-component of momentum per unit y, x. 
From equations (1)  and (3), it  can easily be shown that 

Equation (8) relates the rate of charge of magnetic flux to the mismatch of the 
upstream and downstream values of the electric field far from the shock region. 
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Similarly, i t  can be shown that 

d X  = [ pum-2b - pV, 152. 
p z  (9)  

Rate of increase Lorentz force Momentum 
of transverse ( J A B )  ' flux 
momentum 

Obviously if the disturbance is of finite extent, i.e. (R,)im and (fL)*m are zero, 
then A and x are constant in value because the right-hand sides of equations (8) 
and (9) are identically zero. If the disturbance under consideration is such that 
(B,-)hm and (E),m are not all zero, then A and x will, in general, increase at a 
constant rate with time because the right-hand sides of eqtmtions (8) and (9) 
will have, in general, constant, non-zero values. 

It is possible to obtain expressions similar to (8) and (9) even when no lineariza- 
tion is introduced. This is illustrated by equations (30) and (31) of 93. 

2.2. The steady-state shock-structure 
Let us suppose that b and v tend to constant values a t  the edge of the shock 
which satisfy the appropriate boundary conditions, i.e. equations (3), with 
h(aB,/ax) = 0, and (4). Admittedly our Cartesian set of axes has been chosen 
such that in the undisturbed steady state b and v both tend to zero as 1x1 --too. 
However, an initial disturbance might arise which would produce a steady-state 
situation in which b and v both have non-zero values at the edge of the shock 
layer. Hence the more general case is examined. The steady-state equations can 
be obtained from (1) and ( 2 ) .  They are 

db 
ax h - + ~ ( m - ~  - 1) b = A,, 

and = um-2b+A,, (11) 
where 

Al = {ub(mP2 - l)>m = const. and A, = {x - um-,b>, = const. 

The solution of equation (10) is 

where 

and A is constant. 
These results apply to any kind of oblique shock. It is obvious that 9 is 

indeterminate if, and only if, ( W L ) - . ~  > 1 and (VZ)+~ < 1. This is simply the condi- 
tion that the shock is trans-Alfvknic. Thus B, and V ,  have an indeterminate 
shock structure in all T.A. shocks, except the 2-3 one,?- even when the end states 
are zero (i.e. A, = 0 = A,) .  In  such a case ?; and B, can take small, but finite, 
values within the shock region. 

t This is the species which has been omitted from discussion in this section. 
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2.3. An initial disturbance of Jinite extent 

The aut,hor proposes that a small disturbance of finite extent will, in general, 
deposit some flux of b and v at the gasdynamic discontinuity, and that the 
balance is propagated downstream via the one diffusing Alvh  wave which it 
can emit. It is this asymptotic state which is studied in this subsection. It is 
contended that the outgoing wave is of finite extent. Let the flux of b in the 
outgoing wave be F, (i.e. F, is the contribution to A from the outgoing wave). 
Now the length scale of this wave will increase with time until we virtually have 
the same relationship between b, and v, as for the infinitely conducting case. 
This relationship is v, = ( - wi;l b2). Hence, it is asserted that the flux of v 2  in the 
outgoing wave is - ";IF,. 

In a previous paper (Todd 1964), the reaction of a T.A.N. shock, to a disturbance 
of finite extent, was examined. The asymptotic form of the shock profile of B, 
and were obtained by two different methods, both of which gave the same 
answer. The first method is that used later in this subsection and depends on the 
aforementioned assumptions. The second method employed contour integrations 
and was independent of any of the assumptions made in the first paragraph of 
this subsection. 

Now the flux of b contained in the shock region, F! (say), is given by 

F! = A J - + : O ~ ~  = AR, (say). 

The corresponding flux of V,  is 

+ W  

- m  
A S  rn-2Qcix = AR, (say). 

Strictly speaking the upper limit on these integral signs should be a point between 
the shock region and the outgoing wave. However, for all practical purposes this 
may be taken as being infinity. Now since A and x are conserved, we require that 

F,+ AR, = A, and -mi1  F,+ AR, = x. 
Hence A = (A + ? n Z ~ ) / ( R 1  + ~ L ~ R , ) .  (13) 

This is the integral expression which, together with the relevant boundary con- 
ditions, fixes the shock structure of B, and V,  when steady, null states exist on 
either side of the shock region. Now if A had a non-zero value, A ,  (say), a t  our 
initial time and if the fluxes of b and v in the disturbance were A, and x,, respec- 
tively, the right-hand side of (13) would reduce to 

~ , + ~ ~ , + ~ o ~ / ~ ~ , + ~ z ~ , ~ .  

The results of this section illustrate'the manner in which T.A. shocks can collect 
flux. The constant 'A' of equation (13) is, of course, a generalization of what is 
obtained in the previous paper (Todd 1964) and reduces to that expression for 
the degenerate T.A.N. case. 
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2.4. The complementary initial value problem 

At t = 0, b(x < 0) ,  b(x > 0), v(x < 0)  and v(x > 0) are constant in value which 
means that b(lr < 0) = b, = constant, etc. Let b, =f,, b, = fz, v, = g, and 
‘u2 = g,. The most general disturbance of the type discussed in Q 2.1 can be split 
into one of the above kind and one of finite extent. Hence, when the solution to 
this complementary problem is found, the solution of the ‘general ’ disturbance 
is known. 

In  general, A and x rise linearly with time. In  accordance with the result 
obtained in the degenerate T.A.N. case, an asymptotic solution, for large t ,  of the 
kind given below is sought for b, at, and near, the shock 

b = Y(x)  +Pt@(x), ( la)  
where p is a dimensional constant. Equations (1) and ( 3 )  may be rewritten as 

and 

Let us call the operator on b in equation (17) L(a/at, alax). Let 

L(O,d/dx) = L ( D )  = L and M = AD-u(1 - m - 2 ) .  

is constant, it  can be shown that Then, using the fact that 

(L (D)}b  = 0, is, of course, satisfied by b = ACD(x). It is required that 

d 
Thus { W ) } Y  = P,, {(1+m-2)u@}> 

and therefore 

Nl is a constant. The other constant of integration must be identically zero. Then 

(19) 

(M(D)}  Y = P I z  (1 + m - 2 )  @ d( + 4. 

I 
(18) 

0 

Y(x) = A CD + 1: A-l(  p ( 1 + m-,) CD dy + A\ CD-I d( CD(x). 

A is a constant. In the T.A.N. case, a diffusing step Alfven wave was propagated 
away from the shock region. Let us assume that this is again so and that just 
downstream of the shock region b + (b,  + C) and v + (v, - m;l C). For the pur- 
poses of the above solution ‘just downstream of the shock region’ is the point 
x = + co. N, is easily evaluated from equation (19) as 

Nl = Cu(m-2- 1) b}km-  pj-o*m (1 + m - 2 )  CD a(. (20) 
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Hence, since the same value of AT, must be obtained whether we take + 00 or - 00 
as our outer limit, it is required that 

(R, + R2) /3- Z C , ( ~ , ~  - 1)  C = ul( 1 - mc2)f1 + u2(mc2 - 1 ) f Z .  (21) 

(The definitions of R, and R, are given in $2.3.)  Let us now find V ,  in the shock 
region. It follows from equation (15) that 

(22) 

The boundary conditions on V ,  are satisfied if 

R,P+u2(1+m2_1)C = ( U 1 f 1 - U z f z ) -  (u1g,-u,g,)* (23) 

The values of /3 and C are obtained by solving the simultaneous pair o f  equations 
(21) and (23). This gives 

PK, = ( U Y U  ( (2  - mz’)f1 + (m,l- 1) Lf2 - mz(zg1 - 92)h (24) 

where K ,  = (UZlh2) (El + m,R,), (25) 

= (u,/h,) (I(g2-~~1)+mz2(f1-f2)~R1+ (gZ-%/ l+z~ l - f2 )~2) .  ( 2 6 )  

and m ; ’ ( m ~ ~ +  1)K,C 

For the degenerate T.A.N. case, (24) and (26) yield the results obtained in the 
previous paper (Todd 1964). In  all this work the constant ‘A’ of equation (19)-f 
has remained an indeterminate constant, i.e. the governing equations are satisfied 
whatever its value. This constant can presumably be obtained only by examining 
the initial value problem, just as was done by Todd (1964) for the degenerate 
T.A.N. case. 

However, all the important features of the asymptotic state have been 
obtained. These are that the shock profiles of b and u grow linearly with time, 
while outside the shock region b and u take steady uniform, values. Non-linear 
effects must eventually dominate and disrupt the shock structure in some way. 

2.5. T h e  general transverse disturbance of the type discussed in 5 2.1 

In  this case the asymptotic forms of b(x, t )  and v(x, t )  are found by treating the 
disturbance as a combination of one of the type considered in 8 2.3 and one of 
the kind considered in $ 2.4. The sums of  the separate solutions give the answers 
for b and u in the general case. 

If /3 = 0 then a steady state will be reached in which b and u tend to non-zero 
values outside the shock region. We note that, in such a case, 

-4 = A(fl~fZtsl,g,) 

where b = b(x, 0) and u = u(x ,  0). This integral equation, together with the rele- 
vant boundary conditions, fixes the change in the shock profiles of b and V,  due 
to the passage of such a disturbance. Since we cannot evaluate A( f , ,  f 2 ,  gl, 9.J 
analytically, this last statement is rather academic. 

t We shall refer t o  this constant as A ( j l ,  f2, g, ,  ga) .  
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2.6. The effect of shear viscosity 

It is interesting to consider what happens to the steady-state structure of B, and 
V ,  when the other diffusivities are taken into account. We shall only consider 
those T.A. shocks within which V,, h and the shear viscosity 7 have a steady-state 
structure. Which T.A. shocks this excludes, depends on the ordering of the 
diffusivities. It is not intended to go into this question in detail. The reader is 
referred to Germain (1960), Kulikovskii & Liubimov (1961) and Anderson (1963). 
However, it is in most cases a rather academic exercise since very few of the 
possible orderings of the diffusivities can be obtained in practice. The only one 
which would enter the equation explicitly is that corresponding to the shear 
viscosity. The steady-state linearized equations are now 

[ h ( d / d X )  - U ]  b + V ,  = A,, (28) 

A ,  and A,  are constants. It follows that 

d 
( V z -  

u) (A$-,) b-u2rn-,b = -u(A1+A,), 

where v = r /p .  Let us suppose that h ( x ) ,  v(x), u ( x )  and m(x) exist and are known. 
Examination of the solution of (30) at the edge of the shock layer will reveal the 
uniqueness or otherwise of the profile of b. 

At the edge of the shock b takes the form 

b = A ea+x+ Bea-%+ (particular integral), 

where 

If m < 1 ,  a+ > 0 > a_. If m > 1, a, > a- > 0. Hence the profile of b is given by 

b = (particular integral) + Afl(z), 

a* = &u((v-l+h-l)  & J{(v-14-1)2+ 4v-lh-%?z-2}). 

where fl e-a-X+ 1 as x + + 00. At the upstream edge 

b+ (particular integral) +A(Clea+x+C2ea-"), 

where Cl and C, are numerical constants which could be computed in any given 
case. Hence B, and V ,  have arbitrary structure in those T.A. shocks within which 
A, v, u, B, and V, have a steady-state structure. The work of 0 6 has been done 
already by Dr J. A. Shercliff in unpublished work and probably by other people 
too. However, the result does not seem to be widely known. 

3. The stability of the ' 1-4' trans-AlfvCnic shock to magneto-acoustic 
waves and contact fronts 

The disturbances considered are functions of x and t only, i.e. they are normal 
disturbances. 

3.1. T h e  equations and boundary conditions 

The undisturbed picture is one of a ' 1-4' T.A. shock at rest. The hydrodynamic 
discontinuity contained within this shock region is situated a t  x = 0. 
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Magneto-acoustic waves perturb p ,  p, etc., and thus cause a first-order change 
in the shock structure of these quantities. Allowance must therefore be made 
for a small movement of the shock front relative to its undisturbed motion. Let 
the displacement of the discontinuity from its undisturbed position be E .  New 
co-ordinates X I ,  t are chosen where X I  = (x - c ) .  Thus 

where the ‘dot ’ denotes differentiation with respect to time. 
We shall now write out the governing equations in terms of X I  and t ,  but we 

shall drop the dash in doing so. The electricJield E and V are still nzeasured relative 
to the undisturbed system of axes. 

The boundary conditions are that at x = 0, i.e. the hydrodynamic discontinuity, 

r P K -  &)I = 0, (37) 
[p(K-i.)‘V,+pl= 07 (38) 

(39) [p(V, - 6 )  (e + Q V 2 )  +p,V,] = 0, 

[V,] = 0, and [B,] = 0, (41) 

where e is the internal energy per unit mass, and E,, etc., are the Cartesian 
components of the electric-field vector. Provided the transverse disturbances 
are small, the terms involving B, and T’, which have been omitted from the above 
are of second order. 

3.3. Xhock structure 

Let us examine the steady-state structure of a ‘l-47 T.A. shock. Within the 
region of a magneto-gasdynamic shock where ohmic diffusion only counts, it  is 

(43) required that 

(43) 

(44) 

(45) 

(46) 

F, = p+G&+B~/(2,u) = const., 
G = pV, = const., 

H = h + $( Vz + V:) - E,B,/(pG) = const., 
E, = V,B,-V,B,+h(dB,/dx) = 0, 

F, = GK - B, Bv/p = const. and 
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Even when the thermodynamics of the gas is known the problem is a fairly 
difficult two-dimensional one. There exists an infinity of possible shock profiles 
for the quantities concerned (see, for example, Ludford 1959). As has already 
been mentioned, each involves a ‘subshock ’, i.e. a gasdynamic discontinuity. 
For the purpose of this paper, it  is necessary to be able to pick out some quantity 
which, in addition to equations (12) to (16), will fix the shock structure. A suit- 
able choice is (B,/Bx)x,o = BO. The structure of each quantity in this shock is 
plotted as a function of BO and of x by starting with a given value of BO, and 
computing outwards. In  this way, a two-dimensional plot of quantities such as 
B ,  = B,(x,BO) (say), etc., would be obtained. 

3.3. The integral equations 
Let us define 

Equation (1)  may be rewritten as 

a a -@Pi)+- {P(<--)K++P+BE/(~~))  = 0. at ax 

Hence 5 at = I ,  = [Gi-Fz]+g, (47) 

where Px and G are defined by equations (12) and (13), respectively. Similarly, 
it  can be shown that 

(48) f P = [ p i - G ] t g ,  

f8 = [p(e+&V2)i-GH]?:, (49) 

Also f,, = [p5i -Fu]?g,  (50) 

and I B Y  = [BgE+EZ]f:. (51) 

where H is defined by equation (14), and 

8 = p(e+&V2)+Bi/(2,u). 

Let us eliminate 6 between the equations (47)-(51) and obtain four integral 
equations depending only on conditions a t  ‘infinity ’. Substituting from equa- 
tion (18) into (47), (49), (50) and (51) we obtain 

[PI f, - [GI f, = [GI2 - [PI [ % I ,  

[PI jpvv - [PKI f p  = [ P 5 1  [GI - [PI [F,I, 
[PI f B Y  - [B,I f, = [B,I [GI + [PI [ E Z I ,  

(52) 

(54) 
and (55) 

where [ A ]  = [Alig.  The integral equations derived in this section are valid even 
if the perturbed quantities are large. 

[ P 1 f t . - [ P ( e + w 2 ) l f p  = ~ P ~ ~ + ~ ~ 2 ~ 1 ~ ~ l - ~ P 1 ~ ~ ~ l ~  (53) 

3.4. Fluxes in the outgoing waves 
In  the next part of this section we will consider the reaction of the ‘1-4’ T.A.  

shock to a small disturbance (in the magneto-acoustic quantities) of finite extent. 
Before doing this, it is necessary to consider the relationships between the fluxes 
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of the various quantities in each of the three outgoing waves, these waves being 
of finite extent. Arguments analogous to those given a t  the beginning of $2.3 
show that these relationships are the same as those for cases in which R, is 
infinite, i.e. those cases in which the length scale of the disturbance is very much 
larger than the natural length scale, (h/u). 

(a,) The contact front. The gas has a change in density in this front. The 
quantities p ,  V, and B are constant throughout the front. Let us call the flux of 
p in the wave F,. This quantity consists of the integral, over the extent of the 
front, of the difference between p and its undisturbed value. The corresponding 
flux of 8 is KO F,, where KO is a constant which is known explicitly if the thermo- 
dynamic properties of the ambient gas are specified. 

( b )  The fast and slow magneto-acoustic waves. If the mass flow through the 
shock is directed from left to right, both of these waves must be right travelling 
relative to the fluid. The relative change of each quantity within the wave is 
small compared to unity. The velocities of the waves are C, and C,, respectively. 
C, and C, are the positive roots of 

c4 - (a; + a; + (pp2)-'B&) c2+ a 2 a 2 - 0  
2 2 -  2 

and 
From now on the suffixes f and s will be omitted from all quantities, and we 

shall simply discuss fluxes in a magneto-acoustic wave. The suffix f or s can be 
substituted in the appropriate places when it is desired to refer only to the fast 
or the slow wave. 

C, > C,. a; = ( ( a j ~ / a p ) ~ ) ~ .  

Let the flux of B, in the wave be F. Then the flux of p in this wave is 

The flux of V, is - B,F/(pp2C), and the flux of pV, is 

The flux of pl$ is 

The flux of 8 in the wave can be written as KF. K would be known explicitly if 
the thermodynamics of the ambient gas was specified. 

3.5. A disturbance of Jinite extent 

Let B! be the value of Bo a t  x = 0 in the undisturbed steady state and K4(B!) be 
the contribution to ( [p ]  IBy - [B,] Ip) at t = 0 from the initial shock profiles of By 
and p. It is convenient to define I4 as ([p]IBv-[B,]Ip)-K,(B~) at t = 0. It 
follows from equation (55) that for a disturbance of finite extent ( [ p ]  IBy - [B,] I,) 
is constant. Again it is suggested that the disturbance will deposit some flux at 
the shock, the balance being propagated downstream via the two outgoing waves 
and the outgoing contact front. Let the contribution to I4 + K4(B$ from the 
new shock profiles be K,(B%). BR is the new value of (B,/B,) at the gasdynamic 



206 L. Todd 

discontinuity. The corresponding two expressions for equations (52)) (53 )  and 
(24) are Il and K,, 1, and K,, and 1, and K,, respectively. K,, Kk, K ,  and K4 
will be known implicitly as functions of B,. It is required that 

h’,(BR) - P l [ K P O  + [PI ( 3 (C + U $ )  w = 1; + Kl(B8)> ( 5 6 )  
f, s 

where 

K2(%1 + ( ~ ~ l ~ , - ~ ~ ( ~ + ~ ~ 2 ) 1 ) 1 ” , + S  ([plKF-[p(e+&V2)1Fp) = 12+K,(B,0), 
f , s  

(57) 

K3(%) -P1[V,lEb - 3 PcV,lFp + [PI - F = 1 3  + K3(@), ( 5 8 )  
f .s  ( PC Bx ) 

(59) 
and lastly 

G(BR)- [B,Ilib+C “IF- [B,IW = Z+K,(B,O). 
f , s  

Bs can thus be found implicitly in terms of the flux in the disturbance and its 
initial value. Even though all the perturbed quantities in the outgoing waves 
must remain small, there is no restriction on the change in BO brought about by 
the disturbance. The restriction does, however, mean that 6 remains small 
compared with the longitudinal velocity of the gas relative to the shock. 

There still remains the mathematical possibility that the new value of BO is 
not unique. Let us suppose that B$ is multivalued. If the value of one or more 
of the K’s changes with these values of I?%, the flux in the outgoing waves would 
be changed. But this is impossible. Thus all of the K’s must have the same 
values for the various possible values of B,. This would mean that the shock 
can take on a completely new structure without consulting the outside world, 
a situation which cannot be tolerated. Thus it is concluded that the new value 
of B, must be unique. 

3.6.  The complementary disturbance 

This is that type of disturbance in which the perturbed quantities have constant, 
uniform values on each side of the gasdynamic discontinuity. In  this case 
([p]I,-[G]I,,), etc., rise linearly with time and obviously the fluxes of the 
various quantities will be divided in some manner between the outgoing waves 
and the shock. However, as the shock profiles do not depend linearly on B,, 
a solution in which the perturbed quantities have constant values just outside 
an unsteady shock region cannot be considered. Thus a solution of the type 
obtained in 8 2.4 is not available. The process outlined above, whereby flux is 
continually being stored up in the shock region cannot go on indefinitely. At 
some stage the creation of entropy, etc., inside the shock is going to produce new 
shocks by choking and, or, splitting processes. Presumably one would then 
have a stable configuration of simple waves, contact fronts and shocks. There 
are, of course, certain disturbances in the above category which do not break up 
the ‘ 1-4’ T.A. shock. These perturbations are such that the initial mismatches 
of (E&, etc., across the magneto-gasdynamic shock can be rectified by the 
emission of the three outgoing waves. 
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3.7. The coupling between transverse and magneto-acoustic disturbances 

Let us consider a small disturbance, in By, V,, p ,  p,  V,, V ,  and B,, of finite extent 
which significantly alters? the value of BO. The results of $ 2.3 cannot be directly 
applied to this problem. However, in the manner described in $3.3,  we can 
show that 

= [pF3-4]?: ,  

and IB, = [B,&-E,]f:. 

Thus for disturbances of finite extent the fluxes of B, and V,  are conserved. The 
asymptotic form for B, at, and near, the shock is obviously that obtained in $2 .3  
except that the value of BO which is used in the calculation of R, and R, must be 
Bfl-, i.e. the value of Bo after the passage of the disturbances in By, etc. 

For a completely arbitrary small disturbance the value of (B,/Bz),=o will, in 
general, be constantly modified by the disturbances in the magneto-acoustic 
quantities as well as by the perturbations in B, and V,. 

4. The stability of the ‘2-3’ trans-Alfvenic shock 
The ‘2-3’ T.A. shock has no steady-state structure. Thus the situation is one 

of two uniform regions, connected by the generalized Rankine-Hugonist equa- 
tions, separated by a region in which time-changes must occur. This latter 
region may contain one or more gasdynamic discontinuities. It is still possible 
to obtain integral equations like those in 0 3.3, though more than one E may be 
involved. Thus the fluxes of the quantities in the breakdown picture are subject 
to the conservation-type conditions. The ‘2-3’ T.A. shock is in fact a wave- 
generator, whereas the other T.A. shocks are flux-collectors. In  order to discuss 
the evolution of the ‘ 3-3 ’ shock, it is necessary to take this property into account 
as well as considering the incoming waves. However, the natural time-changes 
taking place in the ‘shock-region ’ will, in general, lead to a non-linear breakdown 
involving stable shocks, simple waves, etc. 

5. The fate of switch-on and switch-off shocks in finite conductors 
The switch-on shock separates ‘ 1-2’ transitions from ‘ 1-3’ ones. Similarly, 

the switch-off shock divides shocks of the ‘2-4’ species from those in the ‘3-4’ 
category. 

Both these shocks have a unique1 steady-state structure. Furthermore, 
switch-on and switch-off shocks are stable to disturbances in the rnagneto- 
acoustic quantities. 

Let us now discuss the effect of small, normal disturbances in B, and V ,  upon 
switch-on and switch-off shocks. The conservation-type equations (8) and (9) 
of $ 2 are valid. 

For a disturbance of finite extent, the fluxes of B, and V,  are conserved. The 
author suggests that some flux will be deposited at the shock and the balance 

t The perturbations in B, and V,  are such that (BZ/B,),=o is always small compared 
to unity. 

$ The steady-state structure of the transverse quantities is rz = 0 and B, = 0. 
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propagated downstream in the form of a diffusing, right-travelling, Alfvdn wave 
of finite extent. Since convection and propagation are in strict balance on one 
side of the shock, diffusion is the dominant physical process in that region. Hence 
any flux which is collected a t  the shock will tend to diffuse into the Alfvdnic 
region, i.e. the region in which m = 1,  in order that the shock may regain its 
original structure, namely V ,  = 0 and B, = 0. 

Obviously, disturbances exist which will deposit flux at these shocks at  
a greater rate than i t  can be diffused away.? In such cases non-linear effects 
must eventually dominate. 

It is worth discussing the actual breakdown of switch-on and switch-off shocks. 
Let us subject a switch-on shock to a disturbance of the ‘complementary’ type 
(see 0 2.4). The final breakdown picture would consist of a magneto-gasdynamic 
shock which is just ‘1-2’ followed by an Alfvhn simple wave which rotates the 
magnetic field from its new direction back to the y-direction.$ There will be 
magneto-acoustic wavelets, etc., present as well. The Alfvdn simple wave will 
diffuse with time, but, as the ‘1-2, shock moves steadily away from it, the 
breakdown picture is a valid one. 

It must be inferred that, under the action of an entirely arbitrary, small dis- 
turbance, one will always have a shock which is nearly switch-on plus an associ- 
ated tail in the downstream region: this tail being closely related to an Alfvdn 
simple wave. Consequently it is suggested that switch-on shocks are stable. 
For analogous reasons it is suggested that switch-off shocks are stable. 

It must be pointed out that these conclusions on the stability of switch-on 
and switch-off shocks are not valid if the shocks are ‘weak’, i.e. if they are nearly 
null switch-on and null switch-off shocks, respectively. This is because we have 
assumed in deriving the breakdown picture that the perturbations in B, are 
small compared to both B, and B,. A similar statement holds for the perturba- 
tions in K. 

Those T.A. shocks which are just ‘ 1-3 ’ or just ‘2-4’ have similar breakdown 
configurations to switch-on and switch-off shocks, respectively. Thus the gradual 
transition from the stable super-Alfv6nic and sub-Alfvdnic species of shocks to 
the unstable trans-Alfvdnic species is clearly revealed. 

Conclusions 
The technique employed in this paper, that of considering the fluxes of the 

perturbed quantities, is possible because the governing equations for p ,  p,  V and 
B can all be written in the form aAi/at + a(Bij)/axj, where the Ai and the Bij are 
functions of the dependent variables. (For scalar equations, i = 1.) 

It is confirmed in detail that trans-Alfvdnic shocks are unstable to normal 
disturbances in the transverse quantities. It is also concluded that the ‘ 1-4’ 
trans-Alfvdnic shock is unstable to normal perturbations in the magneto- 
acoustic quantities and that the ‘ 3-3 ’ trans-Alfvdnic shock will disintegrate 

t This has been demonstratedanalytically andcomputationally for switch-on andswitch- 
off shocks. This work is as yet unpublished. 

$ The small amplitude waves which are emitted will, in general, cause a slight change 
in this direction. 
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independently of the presence of small disturbances. It must be remembered 
that all trans-Alfvknic shocks, except the ‘2-3’ one, are unstable to small dis- 
turbances other than normal ones. Thus for a completely unrestricted small 
disturbance the instabilities detailed in this paper may be; only a part of a very 
much more complex disintegration pattern. 

I am extremely grateful to Dr J. A. Shercliff for the many stimulating discus- 
sions which we have had. This work was carried out while the author was the 
holder of a Research Studentship from the Department of Scientific and 
Industrial Research. 
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